已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.
题目
已知a,b,c是△ABC的三边,且满足关系式a2+c2=2ab+2bc-2b2,试说明△ABC是等边三角形.
答案
∵原式可化为a2+c2-2ab-2bc+2b2=0,
a2+b2-2ab+c2-2bc+b2=0,
即(a-b)2+(b-c)2=0,
∴a-b=0且b-c=0,即a=b且b=c,
∴a=b=c.
故△ABC是等边三角形.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点