若函数f(x)=x²-ax+4在[1,4]上有零点,则实数a的取值范围为?

若函数f(x)=x²-ax+4在[1,4]上有零点,则实数a的取值范围为?

题目
若函数f(x)=x²-ax+4在[1,4]上有零点,则实数a的取值范围为?
答案
x^2-ax+4=0
得a=(x^2+4)/x=x+4/x
由均值不等式,得 x+4/x>=2√(x*4/x)=4,当x/=4/x,即x=2时取等号,故a>=4
x+1/x的最大值在[1,4]的端点处取得:
x=1,a=5,
x=4,a=5
因此a的取值范围是[4,5]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.