如图,在直角三角形 ABC中AB等于AC,D,E是斜边BC上两点,且角DAE等于45度,将三角形ADC绕点A顺时针旋转90

如图,在直角三角形 ABC中AB等于AC,D,E是斜边BC上两点,且角DAE等于45度,将三角形ADC绕点A顺时针旋转90

题目
如图,在直角三角形 ABC中AB等于AC,D,E是斜边BC上两点,且角DAE等于45度,将三角形ADC绕点A顺时针旋转90
度后,得到三角行AFB,连接EF下列结论.1.三角形AED 全等三角形AEF 2.三角形ABE相似于三角形ACD 3.BE加DC等于DE 4.BE的平方加DC的平方等于DE的平方,其中正确的结论有几个,
答案
∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,AE为△AED和△AEF的公共边,
∴△AED≌△AEF
∴ED=FE
在Rt△ABC中,∠ABC+∠ACB=90°,
又∵∠ACB=∠ABF,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴在Rt△FBE中BE²+BF²=FE²,
∴BE²+DC²=DE² ③显然是不成立的.
故正确的有①④,不正确的有③,②不一定正确.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.