双曲线虚轴的一个端点为M,两个焦点为F1.F2.角F1MF2=120度 则离心率为 ∠F1MO=60 怎么来的

双曲线虚轴的一个端点为M,两个焦点为F1.F2.角F1MF2=120度 则离心率为 ∠F1MO=60 怎么来的

题目
双曲线虚轴的一个端点为M,两个焦点为F1.F2.角F1MF2=120度 则离心率为 ∠F1MO=60 怎么来的
F1MO=60°
答案
F1.F2关于双曲线虚轴对称,∠F1MO=∠F2MO=120度/2=60度,在直角三角形F1MO中,F1O/MO=c/b=tan60度=根号3,c^2=3b^=3(c^2-a^2),2c^2=3a^2,c^2/a^=3/2,离心率e=c/a=根号(3/2)
=(根号6)/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.