椭圆标准方程

椭圆标准方程

题目
椭圆标准方程
F1,F2是椭圆4x²+5y²-20=0的两个焦点,过F1作倾斜角为45°的玄AB,求△F2AB的面积.
答案
可以做2条这样的玄,但因对称性,所求三角形的面积一样
令过F1的斜率为45度的玄的直线方程为y=x+b
化原方程为标准格式,即(x^2)/5+(y^2)/4=1
所以 c=√(5-4)=1,F1F2=2
因为y=x+b过F1(-1,0)
将F1坐标代如y=x+1可得:b=1
解方程组 y=x+1.1)
4x^2+5y^2=20.2)
有,9y^2-8y-16=0
所以,y1=[4(1+√10)]/9,y2=[4(1-√10)]/9
因为△F2AB的面积=S△F2F1A+S△F2F1B
=(1/2)*2*4(1+√10)]/9+(1/2)*2*(-y2)
=(8√10)/9
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.