设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值

题目
设A为n阶矩阵,且满足AAT=E,A的行列式小于零,证明-1是A的一个特征值
答案
证明:|A+E|
= |A+AA^T|
= |A(E+A^T)|
= |A||(E+A)^T|
= |A||A+E|
所以 |A+E|(1-|A|)=0
因为 |A|
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.