证明级数∞∑n=1 [[(-1)^n/n^(1/2)]十1/n]发散

证明级数∞∑n=1 [[(-1)^n/n^(1/2)]十1/n]发散

题目
证明级数∞∑n=1 [[(-1)^n/n^(1/2)]十1/n]发散
答案
该级数即 ∑ (-1)^n/√n + ∑ 1/n,
前者条件收敛,后者发散,其和发散.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.