证明:设F1F2是曲线C1:x^2/5+y^2=1的焦点,P是曲线C2:x^2/3-y^2=1与C1的一个交点,则cos角F1PF2的值 等于0

证明:设F1F2是曲线C1:x^2/5+y^2=1的焦点,P是曲线C2:x^2/3-y^2=1与C1的一个交点,则cos角F1PF2的值 等于0

题目
证明:设F1F2是曲线C1:x^2/5+y^2=1的焦点,P是曲线C2:x^2/3-y^2=1与C1的一个交点,则cos角F1PF2的值 等于0
答案
曲线C1,C2有共同的焦点(2,0),(-2,0)
在三角形PF1F2中,F1F2=4,设PF1=m.PF2=n则m+n=2√5,|m-n|=2√3
两式平方相加得:m^2+n^2=16
余弦定理可得cosF1PF2=(m^2+n^2-16)/2mn=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.