如图,有一抛物线拱桥,已知水位线在AB位置时,水面的宽为46m,水位上升4m就到达警戒线CD,这时水面的宽为43m,若洪水到来时,水位以每小时0.5m的速度上升,测水过警戒线后几小时淹没到
题目
如图,有一抛物线拱桥,已知水位线在AB位置时,水面的宽为
4m,水位上升4m就到达警戒线CD,这时水面的宽为
4m,若洪水到来时,水位以每小时0.5m的速度上升,测水过警戒线后几小时淹没到拱桥顶端M处?
答案
设函数的解析式为y=a(x-2
)(x+2
),由题意,得
4=a(2
-2
)(2
+2
),
解得a=-
,
则y=-
x
2+8.
当x=0时,
y=8,
则OM=8.
则水过警戒线后淹没到拱桥顶端M处的时间为:(8-4)÷0.5=8小时.
答:水过警戒线后淹没到拱桥顶端M处的时间为8小时.
先运用待定系数法求出函数的解析式,根据解析式就可以求出OM的值,根据时间=路程÷速度就可以得出结论.
二次函数的应用.
本题考查了待定系数法求二次函数的解析式的运用,行程问题时间=路程÷速度的数量关系的运用,解答时求出解析式是关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点