若等差数列{an}的通项为an=10-3n,求|a1|+|a2|+```+|an|

若等差数列{an}的通项为an=10-3n,求|a1|+|a2|+```+|an|

题目
若等差数列{an}的通项为an=10-3n,求|a1|+|a2|+```+|an|
答案
先由an=10-3n<0
推出n=4时an开始<0,也就是说从n=4开始|an|=-an
又由an=10-3n 可得a1=7 公差为-3
从n=4开始到n的和为
Sn'=a4+a5+a6+...+an=(a4+an)*(n-3)/2=[(8-3n)(n-3)]/2
S =a1+a2+a3+|Sn'|=a1+a2+a3-[(8-3n)(n-3)]/2
=7+4+1-[(8-3n)(n-3)]/2 = 12-[(8-3n)(n-3)]/2
整理化简得到结果(3/2)n^2-(17/2)n+24 (n≥4 自然数)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.