如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K,求证:EH,BD,FG三条直线相交于一点

如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K,求证:EH,BD,FG三条直线相交于一点

题目

如图,空间四边形ABCD中,E,F分别是AB和CB上的点,G,H分别是CD和AD上的点,且EH与FG相交于点K,求证:EH,BD,FG三条直线相交于一点

答案
证明:
∵EH∩FG=K
∴K∈EH K∈FG
∵EH(平面ABD
∴K∈平面ABD
同理K∈平面BCD
∵平面ABD∩平面BCD=BD
∴K∈BD
∴EH、BD、FG三条直线相交于同一点
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.