高数现代矩阵题
题目
高数现代矩阵题
A=E-2a*aT,E是m阶单位矩阵,a是n维单位列向量,证明任意一个n维列向量B,都有||AB||=||B||.
答案
||Aβ||²=Aββ'A'=﹙E-2αα'﹚ββ'﹙E-2αα'﹚=ββ'-2ββ'αα'-2αα'ββ'+4αα'ββ'αα'注意α‘α β’β α‘β = β’α都是“数”﹙1行1列﹚可以和矩阵交换.且α‘α =1,∴ββ'-2ββ'α...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点