求曲线y=x^2与x=y^2所围成封闭图形的面积,以及该图形绕x轴旋转所得的旋转体的体积.

求曲线y=x^2与x=y^2所围成封闭图形的面积,以及该图形绕x轴旋转所得的旋转体的体积.

题目
求曲线y=x^2与x=y^2所围成封闭图形的面积,以及该图形绕x轴旋转所得的旋转体的体积.
答案
用定积分
y=x^2与x=y^2的交点(0,1)(1,1)
面积=∫[0,1] (√x-x^2)dx
=[2/3x^(3/2)-x^3/3][0,1]
=1/3
体积=∫[0,1] π[(√x)^2-(x^2)^2]dx
=π(x^2/2-x^5/5)[0,1]
=3π/10
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.