在△ABC中,cosA=4/5,tanB=2,求tan2C

在△ABC中,cosA=4/5,tanB=2,求tan2C

题目
在△ABC中,cosA=4/5,tanB=2,求tan2C
答案
tanA=3/4 tanB=2

tanA+tanB+tanC=tanAtanBtanC
得tanC=11/2
tan2C= -44/117
证明
tanA+tanB+tanC=tanAtanBtanC
因为三角形ABC为锐角
所以tanC=tan[ ∏-(A+B)]
即tanC=-(tanA+tanB)÷(1-tanA×tanB)
-tanC=(tanA+tanB)÷(1-tanA×tanB)
-tanC+tanA×tanB×tanC=tanA+tanB
移项tanA×tanB×tanC=tanA+tanB+tanC
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.