1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明

1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明

题目
1*n+2*(n-1)+3*(n-2)+…+n*1=1/6n(n+1)(n+2)数学归纳法证明
如题
是用数学归纳法证明的。1.当n=1时…2.…这样的
答案
1.当n=1时,左边=1,右边=(1/6)*1*(1+1)*(1+2)=1,左边=右边,
所以原等式成立.
2.设当n=k(k>=1),原等式也成立,
即1*k+2*(k-1)+3*(k-2)+...+k*1=(1/6)k(k+1)(k+2)成立.
3.当n=k+1时,原等式的左边=1*(k+1)+2*[(k+1)-1]+3*[(k+1)-2]+...+(k+1)*1
=[1*k+1]+[2*(k-1)+2]+[3*(k-2)+3]+……+[k*1+1]
=[1*k+2*(k-1)+3*(k-2)+...+k*1]+[1+2+3+……+(k+1)]
=(1/6)k(k+1)(k+2)+(k+1)(k+2)/2,(利用了2.假设)
=(1/6)(k+1)(k+2)(k+3)
而右边=(1/6)(k+1)[(k+1)+1][(k+1)+2]=(1/6)(k+1)(k+2)(k+3),
左边=右边,
所以,当n=k+1时,原等式也成立.
5.综上所述,对于任意正整数n,原等式都成立
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.