若关于x的方程x2+2(a+1)x+2a+1=0有且仅有一个小于1的正数根,那么实数a的取值范围是 _ .
题目
若关于x的方程x2+2(a+1)x+2a+1=0有且仅有一个小于1的正数根,那么实数a的取值范围是 ___ .
答案
由题意令f(x)=x
2+2(a+1)x+2a+1,方程的判别式△=4a
2,故方程一定有根,当△=0时,方程有一个负根不合题意,故方程必有两根
关于x的方程x
2+2(a+1)x+2a+1=0有且仅有一个小于1的正数根,故f(0)×f(1)<0
即(2a+1)(4a+4)<0,解得-1<a<-
即实数a的取值范围是(-1,-
)
故答案为(-1,-
)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点