求函数f(x)=(x^3+3x^2-x-3)/(x^2+x-6)的连续区间,并求极限当x趋向于0、-3、2 时f(x)的值

求函数f(x)=(x^3+3x^2-x-3)/(x^2+x-6)的连续区间,并求极限当x趋向于0、-3、2 时f(x)的值

题目
求函数f(x)=(x^3+3x^2-x-3)/(x^2+x-6)的连续区间,并求极限当x趋向于0、-3、2 时f(x)的值
分母不是可以化为(x+3)(x-2)吗,所以连续区间就是除了x=2、x=-3之外的区间,但是当x=-3和x=2时,分母为0 ,根本就不存在了,为什么答案还给出当x=-3时,f(x)=-8/5,x=2时f(x)=正无穷
答案
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.