A,B是抛物线y^2=2px(p>0)上的两个动点,O为坐标原点,直线OA,OB倾斜角之和为135°.求证直线AB过定点.
题目
A,B是抛物线y^2=2px(p>0)上的两个动点,O为坐标原点,直线OA,OB倾斜角之和为135°.求证直线AB过定点.
答案
设OA:y=k1x,OB:y=k2x 代入y^2=2px得:A(2p/k1^2,2p/k1),B(2p/k2^2,2p/k2),又直线OA,OB倾斜角之和为135,所以(k1+k2)/(1-k1k2)=tan135°=-1k1+k2=k1k2-1 ,(k1-1)(k2-1)=2,kAB=k1k2/(k1+k2)=1+1/(k1+k2)又AB 方...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 已知a(a-3)-(a平方-3b)=9,求2分之a平方+b平方-ab的值?
- m和5m的公倍数有
- 书写结束叫什么笔
- 什么是祈使句啊?
- 氮气转化为硝酸盐的化学方程式!
- “0”是质数还是合数麻烦告诉我
- 初中英语语法,现在上高一,初中英语落下很多,学着很吃力,
- 看一下这句子是什么状语从句,表原因还是时间?
- 求直线L1:3x-2y-6=0关于直线L:2x-3x+1=0对称的直线L2的方程
- 一乳制品加工场销售员小王给超市送来10箱奶粉,每箱20袋,每袋400g,当他要返回厂里时,突然接到厂部打来电话,说这10箱奶粉中有一箱因装罐机出现了故障,每袋少装了20g,要求他立即把缺量的一箱带回去