已知f(x)是定义在R上的函数,若对任意x∈R,都有f(x+4)=f(x)+2f(2),且函数f(x-1)的图象关于直线x=1对称,f(1)=2,则f(2011)等于( ) A.2 B.3 C.4
题目
已知f(x)是定义在R上的函数,若对任意x∈R,都有f(x+4)=f(x)+2f(2),且函数f(x-1)的图象关于直线x=1对称,f(1)=2,则f(2011)等于( )
A. 2
B. 3
C. 4
D. 6
答案
因为函数f(x-1)的图象关于直线x=1对称,
所以函数f(x)的图象关于直线x=0对称,即函数f(x)是偶函数,故有f(-x)=f(x).
∵对任意x∈R,都有f(x+4)=f(x)+2f(2),
∴f(-2+4)=f(-2)+2f(2)⇒f(-2)+f(2)=0⇒2f(2)=0⇒f(2)=0
∴f(x+4)=f(x)+2f(2)=f(x).即函数周期为4.
∴f(2011)=f(4×502+3)=f(3)=f(-1)=f(1)=2.
故选A.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点