⒈ 知三角形ABC周长为√2 +√1,且sinA+sinB=√2 sinC.
题目
⒈ 知三角形ABC周长为√2 +√1,且sinA+sinB=√2 sinC.
①求c的长
②若三角形ABC面积为1/6 sinC,求角C
答案
由正弦定理
a/sinA=b/sinB=c/sinC
令a/sinA=b/sinB=c/sinC=1/k
所以sinA=ak,sinB=bk,sinC=ck
sinA+sinB=√2 sinC
a+b=√2c
周长=a+b+c=1+√2
所以√2c+c=1+√2
c=1
S=ab(sinC)/2=1/6sinC
ab=1/3
a+b=√2c
a^2+2ab+b^2=2c^2
所以a^2+b^2=2c^2-2ab=2-2/3=4/3
所以 cosC=(a^2+b^2-c^2)/(2ab)=(4/3-1)/(2*1/3)=1/2
所以C=60度
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点