已知f(x)=ax^2+bx+1(a,b为实数,a≠0),x∈R时,函数f(x)的最小值是f(-1)=0 求f(x)的解析式

已知f(x)=ax^2+bx+1(a,b为实数,a≠0),x∈R时,函数f(x)的最小值是f(-1)=0 求f(x)的解析式

题目
已知f(x)=ax^2+bx+1(a,b为实数,a≠0),x∈R时,函数f(x)的最小值是f(-1)=0 求f(x)的解析式
答案
在x属于R的范围内有最小值,所以函数图形开口向上,即a>0.其最小值所在的横坐标为x=-b/(2a)
所以-b/(2a)=-1 即b/2a=1 再将f(-1)=0 代入式中得a-b+1=0
联合两个式子求的a,b的值 a=1 b=2
故f(x)=x^2+2x+1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.