已知2x+y=2,求2/(x+1)+1/y的最小值
题目
已知2x+y=2,求2/(x+1)+1/y的最小值
答案
解
应该缺了正数的条件,x+1>0,y>0
2x+y=2
2(x+1)+y=4
2/(x+1)+1/y
=4/[2(x+1)]+4/(4y)
=[2(x+1)+y]/[2(x+1)]+[2(x+1)+y]/(4y)
=1+y/(2x+2)+(2x+2)/4y+1/4
=5/4+y/(2x+2)+(2x+2)/(4y)
≥5/4+2√(1/4)
=5/4+1
=9/4
当且仅当 y/(2x+2)=(2x+2)/4y
即x=1/3,y=4/3时等号成立
所以,所求最小值为9/4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点