若不等式x^2-mx+1≥0对一切x属于(0,1/2]恒成立,则实数m的最大值为?
题目
若不等式x^2-mx+1≥0对一切x属于(0,1/2]恒成立,则实数m的最大值为?
答案
不等式x^2-mx+1≥0对一切x属于(0,1/2]恒成立
即m≤(x^2+1)/x对一切x属于(0,1/2]恒成立
于是m小于等于右端函数的最小值
而(x^2+1)/x在(0,1/2]上单调递减,于是当x=1/2时取最小值5/2
于是m≤5/2
即m的最大值为5/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点