矩形ABCD两条对角线相交于M(2,0)AB边所在直线方程为x-3y-6=0点T(-1,1)在AD所在直线上,动圆P过N...
题目
矩形ABCD两条对角线相交于M(2,0)AB边所在直线方程为x-3y-6=0点T(-1,1)在AD所在直线上,动圆P过N...
矩形ABCD两条对角线相交于M(2,0)AB边所在直线方程为x-3y-6=0点T(-1,1)在AD所在直线上,动圆P过N(-2,0)且与ABCD外接圆外切,求动圆圆心的轨迹方程
答案
动圆圆心C(x,y) |CM|-|CN|=|TM|=根号10 双曲线定义可知点C的轨迹是双曲线的一支(左支)
c=2 a=根号10/2 b=根号6/2
动圆圆心的轨迹方程x^2/(5/2)-y^2/(3/2) (x
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点