计算二重积分∫(0~1)dx∫(x²~1)x³sin(y³)dy
题目
计算二重积分∫(0~1)dx∫(x²~1)x³sin(y³)dy
答案
对此二重积分改变积分次序,
则原式=∫(0到1)sin(y^3)dy∫(0到√y)x^3dx
=1/4∫(0到1)sin(y^3)*y^2 dy
=1/12 * (1-cos1).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- Did you go _____yesterday?(where)
- 六年级上学期数学
- ∫ inx/√x dx?
- 2=-2,3=0,4=2,5=4,6=6,7=7 求100=?通项公式
- 关于草木灰的方程式
- 耕地占地球陆地总面积的百分之多少?
- vegetative growth是什么意思
- 敝人是什么意思?卑职,陛下,令尊,寡人,足下,令郎,老朽,麾下分别是什么意思?
- 50字左右的成语故事
- 已知正数a、b满足4a+b=1,则1/a+1/b的最小值为?
热门考点