已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,m)到焦点F的距离为3,斜率为2的直线l与抛物线C交于A,B两点,设满足AB模=3√5求抛物线和直线l方程
题目
已知抛物线C的顶点在原点,焦点在X轴上且抛物线C上的点P(2,m)到焦点F的距离为3,斜率为2的直线l与抛物线C交于A,B两点,设满足AB模=3√5求抛物线和直线l方程
答案
由题意知,抛物线为焦点在x轴上的抛物线.
(1)∴设y^2=2px(p>0)焦点坐标(p/2,0)
∵抛物线上的一点到焦点的距离等于这点到抛物线准线的距离(准线:x=-p/2)
∴√[(2-p/2)^2+m^2]=2-(-p/2)=3
∴p=2 m=2√2
∴抛物线方程为y^2=4x
(2)设A(x1,y1)B(x2,y2)
A、B均满足y^2=4x 设直线为y=2x+b
∴y1^2=4x1
y2^2=4x2
两式相减 (y1+y2)(y1-y2)=4(x1-x2)
因为斜率为2 所以 (y1-y2)/(x1-x2)=2 ∴y1+y2=2
将直线与抛物线方程联立得:4x^2+(4b-4)x+b^2=0
|AB|=3√5=√[(x1-x2)^2+(y1-y2)^2]=√[(x1+x2)^2-4x1x2+(y1+y2)^2-4y1y2] ①
由联立式得:x1+x2=1-b x1x2=b^2/4 y1y2=4x1x2+2b(x1+x2)+b^2
将以上三个式子带入①得:b=-4
∴l为y=2x-4
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 重砌成语墙:下面这道首尾相接的“成语墙”在施工时给弄乱了,请你动手把它重新“砌”好,能办到吗
- 一个圆柱形汽油桶,从里面量得底面直径4分米.每升汽油重0.75千克,装满一共是47.1千克.这个油桶的高是
- 南极洲的暖季是什么时候
- 已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点, (1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形; (2)若E,F分别为AB,CA延长线上的点,
- 举例说明古代汉语被动表示法有几种类型~?
- 1.读书破万卷-------( )
- 原子得到电子变成阴离子,原子失去电子变成阳离子.如果既没得到也没失去呢?那是什么?
- 找规律 ①1 3 6 10 —— —— 28 36 …… ②1 4 2 8 4 ____ _____ 32 46 ……
- 小马虎在计算除以一个数时,由于除数的小数点像右点错了一位,结果得8.4,这道题正确的除数是多少!
- (1)两数相乘,同号得( ),异号得( ),并把( )相乘.
热门考点