如图,AC平分角BAD,CD=CB,AB>AD,CE垂直于AB于E,CF垂直于AD于F.求证;角CBA+角ADC=180°
题目
如图,AC平分角BAD,CD=CB,AB>AD,CE垂直于AB于E,CF垂直于AD于F.求证;角CBA+角ADC=180°
答案
证明:∵AC平分∠BAD;
又∵CE⊥AB,CF⊥AD;
∴CE=CF;
∵△BCE与△DCF均为Rt△;
又∵CD=CB;
∴△BCE≌△DCF;
∴∠CBE=∠CDF;
∵∠CDF+∠ADC=180°;
∴∠CBE+∠ADC=180°;
即∠CBA+∠ADC=180°;
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点