如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明.
题目
如图,AB=CD,AE⊥BC于E,DF⊥BC于F,CE=BF,连接AD交EF于点O,猜想O为哪些线段的中点?请选择其中一种结论证明.
答案
点O为AD、EF、BC的中点.证明:连接AF,DE,∵CE=BF,∴CE+EF=BF+EF,∴CF=BE.在△AEB和△DFC中,BE=CF,∠AEB=∠CFD=90°,AB=CD,∴△AEB≌△CFD(SAS),∴AE=DF.∵AE⊥BC,DF⊥BC,∴AE∥DF,∴四边形AEDF为平...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点