已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,OA=OB=OC,M、N分别是OA、BC的中点,G是MN的中点,求证:OG⊥BC

已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,OA=OB=OC,M、N分别是OA、BC的中点,G是MN的中点,求证:OG⊥BC

题目
已知空间四边形OABC中,∠AOB=∠BOC=∠AOC,OA=OB=OC,M、N分别是OA、BC的中点,G是MN的中点,求证:OG⊥BC
用向量解题
答案
以下均为向量:
OG=NM/2-NO.1;
NM=AO/2-AN.2;
AO=NO-NA.3;
将3带入2得:MN=(NO-NA)/2-AN=NO/2-AN/2.4
将4带入1得:OG=NO/4-AN/4-NO=NA/4+3ON/4;
由已知易得ON垂直于BC,NA垂直BC;所以它们的向量积为0;
所以OG与BC的向量积为0;即OG⊥BC
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.