求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积

求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积

题目
求曲线y=x^2与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积
答案
求曲线y=x²与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积
由x²-2x=x(x-2)=0,得x₁=0,x₂=2;即直线与抛物线相交于O(0,0)和A(2,4).
曲线y=x²与直线y=2x所围平面图形绕x轴旋转一周所得旋转体的体积V=直线段OA绕x轴旋转形成的圆锥的体积-抛物线段OA绕x轴旋转所形成的侧面为抛物面的旋转体的体积
=(1/3)×π×4²×2-[0,2]∫π(x²)²dx
=(32/3)π-π[(x^5)/5]︱[0,2]=(32/3)π-(32/5)π=(64/15)π
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.