高数中的函数的极限是什么?

高数中的函数的极限是什么?

题目
高数中的函数的极限是什么?
答案
极限是高等数学的基础,要学清楚.
设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.   │f(x)-A│<ε ,   则称数A为函数f(x)当x→+∞时的极限,记作   f(x)→A(x→+∞).   例y=1/x,x→+∞时极限为y=0   函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的.   极限符号可记为lim.
函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,而运用ε-δ定义更多的见诸于已知极限值的证明题中.掌握这类证明对初学者深刻理解运用极限定义大有裨益.以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x.|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x.时的极限.   问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等.1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况.详见附例1.   函数极限性质的合理运用.常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等.如函数极限的唯一性(若极限 存在,则在该点的极限是唯一的)
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定.下面介绍几个常用的判定数列极限的定理.   1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立   (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A   不但能证明极限存在,还可以求极限,主要用放缩法.   2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛.   在运用以上两条去求函数的极限时尤需注意以下关键之点.一是先要用单调有界定理证明收敛,然后再求极限值.二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值.   3.柯西准则   数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.