高数中的函数的极限是什么?
题目
高数中的函数的极限是什么?
答案
极限是高等数学的基础,要学清楚.
设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式. │f(x)-A│<ε , 则称数A为函数f(x)当x→+∞时的极限,记作 f(x)→A(x→+∞). 例y=1/x,x→+∞时极限为y=0 函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的. 极限符号可记为lim.
函数极限可以分成x→∞,x→+∞,x→-∞,x→Xo,而运用ε-δ定义更多的见诸于已知极限值的证明题中.掌握这类证明对初学者深刻理解运用极限定义大有裨益.以x→Xo 的极限为例,f(x) 在点Xo 以A为极限的定义是: 对于任意给定的正数ε(无论它多么小),总存在正数δ ,使得当x满足不等式0<|x-x.|<δ 时,对应的函数值f(x)都满足不等式: |f(x)-A|<ε ,那么常数A就叫做函数f(x)当 x→x.时的极限. 问题的关键在于找到符合定义要求的 ,在这一过程中会用到一些不等式技巧,例如放缩法等.1999年的研究生考试试题中,更是直接考察了考生对定义的掌握情况.详见附例1. 函数极限性质的合理运用.常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等.如函数极限的唯一性(若极限 存在,则在该点的极限是唯一的)
有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定.下面介绍几个常用的判定数列极限的定理. 1.夹逼定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立 (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A 不但能证明极限存在,还可以求极限,主要用放缩法. 2.单调有界准则:单调增加(减少)有上(下)界的数列必定收敛. 在运用以上两条去求函数的极限时尤需注意以下关键之点.一是先要用单调有界定理证明收敛,然后再求极限值.二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值. 3.柯西准则 数列收敛的充分必要条件是任给ε>0,存在N(ε),使得当n>N,m>N时,都有|am-an|<ε成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
- 写一段话,用上“崎岖”、“回环曲折”、“逼峡”、“壮阔”等词语.(100字左右)
- 辨析:三个臭皮匠,顶个诸葛亮 说明整体功能始终大于部分功能之和.
- 怎样用尺规作图三等分90度角和180度角
- co与fe2o3反应为什么会生成feo 和fe3o4
- 一物体全部浸没在水中,弹簧秤的示数是它在空气中时弹簧秤示数的1/2,求物体密度?答案(2*10^3kg/M^2)
- (a+b)²+|b-2|=0,求a²-b³的值
- 君子交淡如水是什么意思
- 元素X和元素Y在周期表中位于相邻
- 如图有9个方格,要求每个方格填入不同的数,使得每列,每行,每条对角线上三个数之和都相等,问图中左上角的度数是多少.
- 如果ab小于0,a大于b,则有( )
热门考点