已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E. 求证:∠AFD=∠CBE.
题目
已知:如图,四边形ABCD是菱形,F是AB上一点,DF交AC于E.
求证:∠AFD=∠CBE.
答案
证明:∵四边形ABCD是菱形,
∴∠BCE=∠DCE,BC=CD,AB∥CD,
∴∠AFD=∠CDE,
在△BCE和△DCE中
∴△BCE≌△DCE,
∴∠CBE=∠CDE,
∵∠AFD=∠CDE,
∴∠AFD=∠CBE.
根据菱形的性质得出∠BCE=∠DCE,BC=CD,AB∥CD,推出∠AFD=∠CDE,证△BCE≌△DCE,推出∠CBE=∠CDE即可.
菱形的性质;全等三角形的判定与性质.
此题主要考查了菱形的判定与性质以及全等三角形的判定与性质等知识,得出△BCE≌△DCE是解题关键.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- 食,读音yì,怎么组词?
- 二次函数图像向下平移,向左平移,向右平移,向上平移时函数解析式有什么变化
- 英语翻译,学一些新的东西
- 钠在空气中容易氧化,表面变?
- 已知点P在一三象限的角平分线上,且点P到点A(3,6)的距离为PA=15,求点P的坐标
- help,在线“我将把爱心传递下去”英语怎么说‘
- mol/L代表什么啊
- living room dining room kitchen bedroom
- 55/()=()……8
- I have got plenty of money改疑问句 快