f(x)是(-00,+00)偶函数,x大于等于0时,都有f(x+2)=-f(x) 当x[0,2)时f(x)=log2^(x+1), 则f(-2011)+f(2012)=
题目
f(x)是(-00,+00)偶函数,x大于等于0时,都有f(x+2)=-f(x) 当x[0,2)时f(x)=log2^(x+1), 则f(-2011)+f(2012)=
答案
由f(x+2)=-f(x),得f(2012)=-f(2010),f(2010)=-f(2008),所以f(2012)=f(2008)=f(2004)=.=f(0)=log2^1=0
同理:因为f(x)是偶函数,所以f(-2011)=f(2011)=f(2007)=f(2003)=.=f(3)=-f(1)=-log2^2=-1
所以最后结果为-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点