如图,等腰直角△ABC中,∠ACB=90゜,D为CB延长线上一点,AE=AD,且AE⊥AD,BE与AC的延长线交于点P. (1)求证:BP=PE; (2)若AC=3PC,求DB/BC的值.

如图,等腰直角△ABC中,∠ACB=90゜,D为CB延长线上一点,AE=AD,且AE⊥AD,BE与AC的延长线交于点P. (1)求证:BP=PE; (2)若AC=3PC,求DB/BC的值.

题目
如图,等腰直角△ABC中,∠ACB=90゜,D为CB延长线上一点,AE=AD,且AE⊥AD,BE与AC的延长线交于点P.

(1)求证:BP=PE;
(2)若AC=3PC,求
DB
BC
的值.
答案
证明:(1)作EM⊥AP于M,
∵∠ACB=90°,
∴∠M=∠ACD,
∵AD⊥AE,
∴∠DAE=90°,
∴∠EAM+∠AEM=90°,∠EAM+∠DAC=90°,
∴∠DAC=∠AEM,
在△ADC和△EAM中
∠DAC=∠AEM
∠ACD=∠M
AD=AE

∴△ADC≌△EAM,
∴AC=EM,
∵AC=BC,
∴BC=EM,
∵∠ACB=90°,
∴∠BCP=∠M,
在△BCP和△EMP中
∠BCP=∠M
∠BPC=∠EPM
BC=EM

∴△BCP≌△EMP(AAS),
∴BP=PE.
(2)∵△BCP≌△EMP,△ADC≌△EAM,
∴CP=PM,AM=DC,
设PC=PM=x,AC=BC=3x,AM=DC=5x,
∴BD=2x,
DB
BC
2
3
(1)作EM⊥AP于M,证△BCP≌△EMP,求出BC=AC=EM,证△ADC≌△EAM,推出即可;
(2)根据全等三角形性质得出CP=PM,DC=AM,设PC=PM=x,AC=BC=3x,AM=DC=5x,求出BD=2x,即可求出答案.

等腰直角三角形;全等三角形的判定与性质.

本题考查了三角形内角和定理,全等三角形的性质和判定的应用,主要考查学生的推理能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.