求极限lim(x→2) [√(x+2)-2]/√[(x+7)-3]= 求极限lim(x→0)[(1+mx)^n-(1+nx)^m]/x^2=

求极限lim(x→2) [√(x+2)-2]/√[(x+7)-3]= 求极限lim(x→0)[(1+mx)^n-(1+nx)^m]/x^2=

题目
求极限lim(x→2) [√(x+2)-2]/√[(x+7)-3]= 求极限lim(x→0)[(1+mx)^n-(1+nx)^m]/x^2=
求极限lim(x→无穷){1/(2!)+2/(3!)+……+n/[(n+1)!]}=
3/2 1/2mn(n-m) 1
答案
lim(x→2) [√(x+2)-2]/√[(x+7)-3]=lim(x→2) [√(x+2)-2] [√(x+2)+2]√[(x+7)+3]/√[(x+7)-3][√(x+2)+2]√[(x+7)+3]=lim(x→2)((x+2)-4)√[(x+7)+3]/((x+7)-9)[√(x+2)+2]=lim(x→2)√[(x+7)+3]/[√(x+2)+2]=6/4
第二个把分子用二项式展开,取平方项为1/2mn(n-m) x^2,零次项和一次项为0,三次以上取极限后位0,故极限为 1/2mn(n-m)
lim(n→无穷){1/(2!)+2/(3!)+……+n/[(n+1)!]}=lim(n→无穷){(2-1)/(2!)+(3-1)/(3!)+……+(n+1-1)/[(n+1)!]}=lim(n→无穷){1/1!+1/(2!)+1/(3!)+……+1/n!}-{1/(2!)+1/(3!)+……+1/[(n+1)!]}=lim(n→无穷){1-1/[(n+1)!]}=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.