求当x趋向于0时,函数(1-三次根号(1-x+x²))/x的极限

求当x趋向于0时,函数(1-三次根号(1-x+x²))/x的极限

题目
求当x趋向于0时,函数(1-三次根号(1-x+x²))/x的极限
要快,答案是1/3
答案
分子分母同乘:[ 1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3) ] 有理化:
lim(x->0) [1-(1-x+x²)^(1/3)] /x
=lim(x->0) [1-(1-x+x²)] /{ x *[ 1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3) ] }
=lim(x->0) [ x-x² ] /{ x *[ 1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3) ] }
=lim(x->0) [ 1- x ] /[ 1+(1-x+x²)^(1/3)+(1-x+x²)^(2/3) ]
= 1/[1+1+1]
= 1/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.