已知点F1(-1,0),F2(1,0).若与直线L:x-y+3=0有公共点的椭圆C以F1,F2为焦点,且具有最短长轴,求椭圆C方程
题目
已知点F1(-1,0),F2(1,0).若与直线L:x-y+3=0有公共点的椭圆C以F1,F2为焦点,且具有最短长轴,求椭圆C方程
答案
设椭圆方程为 x²/k +y²/(k-1)=1,(其中k=a²),与直线方程 x-y+3=0 联立,化为一元二次方程 :
(2k-1)x² +6k x +10k -k²=0,因有公共点,所以判别式Δ=4[9k²-(2k-1)(10k-k²)]≥0,
即 k(k²-6k+5)≥0,其中 k=a²≥0,解二次不等式 k²-6k+5≥0 得 :k≥5 (另k≤ 1舍) ,
所以k的最小值是5,即a²=5.
所以椭圆方程为 :x²/5 +y²/4 =1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点