用洛必达法则求lim x→0 tanx-x /(x²sinx)的极限
题目
用洛必达法则求lim x→0 tanx-x /(x²sinx)的极限
lim x→0 secx/x²-1/xsinx (无穷小代换)
=lim x→0 1/x²(secx-1) (洛必达法则)
=lim x→0 secxtanx/2x
=lim x→0 cosx/2
=1/2
lim x→0 secx/x²-1/xsinx (无穷小代换)
=lim x→0 1/x²-lim x→0 1/x²
=0
lim x→0 tanx-x /x²*x (无穷小代换)
=lim x→0 cosx-1/3x²
=lim x→0 -sinx/6x
=lim x→0 -cosx/6
=-1/6
分别错在哪
答案
三个都是一样
不能用无穷小代换后的量做加减,可以做乘除
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点