已知a>0,b>0,c>0.求证1/a+1/b+1/c≥(1/√ab)+(1/√bc)+(1/√ac)
题目
已知a>0,b>0,c>0.求证1/a+1/b+1/c≥(1/√ab)+(1/√bc)+(1/√ac)
答案
a,b,c为正实数,所以:
1/a+1/b>=2根号1/ab
1/a+1/c>=2根号1/ac
1/b+1/c>=2根号1/bc
以上三式相加得:
2(1/a+1/b+1/c)>=2[1/根号ab+1/根号bc+1/根号ac]
即:1/a+1/b+1/c>=1/根号ab+1/根号ac+1/根号bc
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点