设α,β是方程4x²-4mx m 2=0,x∈R的两实根,当m为何值时,α²+β²有最小值?求出这个最小值

设α,β是方程4x²-4mx m 2=0,x∈R的两实根,当m为何值时,α²+β²有最小值?求出这个最小值

题目
设α,β是方程4x²-4mx m 2=0,x∈R的两实根,当m为何值时,α²+β²有最小值?求出这个最小值
答案
方程4x²-4mx+ m +2=0
△=16m²-16(m+2)≥0
即m≤-1,或m≥2
α+β=m,αβ=(m+2)/4
α²+β²
=(α+β)²-2αβ
=m²-(m+2)/2
=(m-1/4)²-17/16
因为m的取值范围在m≤-1,或m≥2
所以,当m=-1时,α²+β²有最小值,
最小值=(-1-1/4)²-17/16=1/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.