△ABC中,向量AC=(1+cosα,sinα),BC=(cosα,1+sinα),α∈(0,π/2)

△ABC中,向量AC=(1+cosα,sinα),BC=(cosα,1+sinα),α∈(0,π/2)

题目
△ABC中,向量AC=(1+cosα,sinα),BC=(cosα,1+sinα),α∈(0,π/2)
1、求│AB│及∠C的大小;
2、求△ABC的面积S的最大值.
答案
1.向量AB=AC-BC=(1,-1),
∴|AB|=√2.
2.|AC|=√(2+2cosα),
AB*AC=1+cosα-sinα,
cosA=AB*AC/(|AB||AC|)=(1+cosα-sinα)/[2√(1+cosα)],
(cosA)^2=(1+cosα-sinα-sinαcosα)/[2(1+cosα)]
=(1-sinα)/2,
sinA=√[(1+sinα)/2],
S=(1/2)|AB||AC|sinA
=√[(1+cosα)(1+sinα)/2],α∈(0,π/2),
设t=sinα+cosα,则sinαcosα=(t^2-1)/2,t∈(1,√2],
S=√{[1+t+(t^2-1)/2]/2}
=(t+1)/2,
当t=√2时,S取最大值(√2+1)/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.