数列2/2,4/2^2,6/2^3,……,2n/2^n,……的前n项的和sn=
题目
数列2/2,4/2^2,6/2^3,……,2n/2^n,……的前n项的和sn=
答案
Sn =2/2 + 4/2² + 6/2³ + …… + 2(n-1)/2^(n-1) + 2n/2^n …………①
2Sn=2×(2/2 + 4/2² + 6/2³ + …… + 2n/2^n)
=2 + 4/2 + 6/2² + 8/2³ + …… + 2n/2^(n-1) …………②
②减①得
Sn=2 + 2/2 + 2/2² + 2/2³ + …… +2/2^(n-1) - 2n/2^n
=2[1-(1/2)^n]/[1-(1/2)] - 2n/2^n
=4 - 4/2^n - 2n/2^n
=4 - (2n+4)/2^n
=4 - (n+2)/2^(n-1)
这叫错位相减法
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点