用罗尔定理证明 证明:不管b取何值,方程x三次方-3x+b=0在闭区间-1,1上至多有一个实根

用罗尔定理证明 证明:不管b取何值,方程x三次方-3x+b=0在闭区间-1,1上至多有一个实根

题目
用罗尔定理证明 证明:不管b取何值,方程x三次方-3x+b=0在闭区间-1,1上至多有一个实根
答案
用反证法,假设x^3-3x+b=0在[-1,1]上有两个根(或多于两个),令f(x)=x^3-3x+b,则存在x1和x2属于[-1,1],使得f(x1)=f(x2)=0,根据罗尔定理,知存在ξ属于(-1,1),使得f'(ξ)=3ξ^2-3=0,解得ξ=±1,但ξ不属于(-1,1),矛盾,因此假设不成立(多于两根的情况同理).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.