若a,b,c为正实数,a+b+c=2.求abc最大值.证明1/a+1/b+1/c≥

若a,b,c为正实数,a+b+c=2.求abc最大值.证明1/a+1/b+1/c≥

题目
若a,b,c为正实数,a+b+c=2.求abc最大值.证明1/a+1/b+1/c≥
若a,b,c为正实数,a+b+c=2.求abc最大值.证明1/a+1/b+1/c≥9/2
答案
(1)
∵a,b,c>0,a+b+c=2.
根据均值定理
∴abc≤[(a+b+c)/3]^2=8/27
当且仅当a=b=c=2/3时取等号
∴abc的最大值为8/27
(2)
∵a+b+c=2 ,a,b,c>0
∴2=a+b+c≥3*³√(abc)
又1/a+1/b+1/c≥3 ³√(1/a*1/b*1/c)
两式相乘
2(1/a+1/b+1/c)≥9
∴1/a+1/b+1/c≥9/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.