已知抛物线方程x2=4y,过点(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
题目
已知抛物线方程x2=4y,过点(t,-4)作抛物线的两条切线PA、PB,切点分别为A、B.
(I)求证直线AB过定点(0,4);
(II)求△OAB(O为坐标原点)面积的最小值
(Ⅰ)设切点为A(x1,y1),B(x2,y2),又y'= x,
则切线PA的方程为:y-y1= x1(x-x1),即y= x-y1,
切线PB的方程为:y-y2= (x-x2)即y= x-y2,
由(t,-4)是PA、PB交点可知:-4= x1t-y1,-4= x2t-y2,
∴过A、B的直线方程为-4= tx-y,
即tx-y+4=0,所以直线AB:tx-y+4=0过定点(0,4).
(Ⅱ)由 ,得x2-2tx-16=0.
则x1+x2=2t,x1x2=-16,
因为S△OAB= ×4×|x1-x2|=2 =2 ≥16,当且仅当t=0时,S最小=16
只是在网上搜的答案,其中又y'= x是为什么?
答案
就是又对抛物线方程X^2=4y进行求导,也就是求斜率,求得斜率后带入PA和PB的点斜式切线方程.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点
- Mary and Ann______green.(like/likes)
- 一种药水,里面药物和水的比是1:250.现在有药物40克,可以配置多少克的药水?
- 1.2.3.4.5.6.7.8.9.10.11.12.用英语怎么说
- 在底100米高24米的平行四边形大豆里按照每株占地2平方分米种大豆.每株收0.5千克,这块地可收大豆几千克
- 英语翻译
- 独守丞与战谯门中的与读几声
- 介绍自己的狗的英文短文
- 把红、黄、蓝、白四块积木堆成一排,一共有_种不同的排法.
- 设向量组a1,a2,a3线性无关,向量组a1,a2,a4线性相关.则a1,a2线性相关还是线性无关?
- 客家土楼虽经几百年的风雨侵蚀,但是( )非常牢固.