若正数abc满足a+b+c=1求1/(2a+1)+1/(2b+1)+1/(2c+1)最小值

若正数abc满足a+b+c=1求1/(2a+1)+1/(2b+1)+1/(2c+1)最小值

题目
若正数abc满足a+b+c=1求1/(2a+1)+1/(2b+1)+1/(2c+1)最小值
答案
1/(2a+1)+1/(2b+1)+1/(2c+1)因为a+b+c=1
用柯西不等式,如果不会就先学这个不等式
1/(2a+1)+1/(2b+1)+1/(2c+1)大于等于
(1+1+1)^2/(2a+1 + 2b+1 + 2c+1) = 9/5
当a=b=c 时取等号
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.