试用聚点定理证明有限覆盖定理

试用聚点定理证明有限覆盖定理

题目
试用聚点定理证明有限覆盖定理
聚点定理和有限覆盖定理是相互等价的,它们都描述了一个集合一种很好的性质——紧性,又与一致连续性有紧密关联.不用太详细,说清思路就行.
答案
证明很长的,要用两个引理.
引理一:证明对于满足聚点的X,(Ui)为一个覆盖,那么存在r>0,使得任意x属于X,都存在i,满足B'(x,r)属于Ui.B'(x,r)是x为中心,r为半径的球.
引理二:对于满足聚点的X,那么对任意r>0,都存在有限点集(xk),满足X等于所有B'(xk,r)的并集.
最后是定理的证明:假设如上的X和(Ui).由引理一,存在如此的r>0.再由引理二,对于这个r,存在如此的(xk).于是X可以被(Uk)所覆盖,因为每个Uk包含B'(xk,r).
两个引理的证明你先想一想,实在做不了再pm我.
第一个对于r=2^(-n),取对应xn,推出矛盾;第二个可以取数列(xn),使得任意两个距离大于r,推出矛盾.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.