已知函数f(x)=ax²+bx+3a+b为偶函数,其定义域为[a-1,2a],求y=f(x)在[-2,4]上的值域.
题目
已知函数f(x)=ax²+bx+3a+b为偶函数,其定义域为[a-1,2a],求y=f(x)在[-2,4]上的值域.
答案
f(x)=ax²+bx+3a+b为偶函数,得f(-x)=f(x)
所以得到:b=0
其定义域为[a-1,2a],关于原点对称,则有a-1+2a=0,即a=1/3
y=f(x)=x^2/3+1
-2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
最新试题
热门考点