求函数y=3x+1/(2x^2)(x>0)的最小值

求函数y=3x+1/(2x^2)(x>0)的最小值

题目
求函数y=3x+1/(2x^2)(x>0)的最小值
如果这样做可以吗?y=2x+x+1/(2x^2)>=3*(2x*x*1/(2x^2))的立方根=3 然后再当且仅当……
答案
不行.均值不等式取等当各部分相同.
你这里要2x=x*=1/(2x^2)是不对的.
应当这样分组
y=3/2 * x +3/2 * x +1/(2x^2) >=立方根(3/2 * x * 3/2 * x * 1/(2x^2))=立方根(9/8)=1/8 * 立方根(9)
使用均值不等式的时候要尽量让各部分相等.不能凑结果,要凑系数和幂的值.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.