已知f(2x+1)为偶函数,则y=f(3x)的对称轴为

已知f(2x+1)为偶函数,则y=f(3x)的对称轴为

题目
已知f(2x+1)为偶函数,则y=f(3x)的对称轴为
答案
对称轴为x=1/3
基本性质:若f(x)=f(a-x) 则f(x)有对称轴x=a/2
由于f(2x+1)为偶函数,故f(2x+1)=f(-2x+1)
令t=2x+1,即有:f(t)=f(2-t),所以f(3t)=f(2-3t)
不妨再令:g(t)=f(3t),
则y=g(t)=f(3t)=f(2-3t)=f[3*(2/3-t)]=g(2/3-t)
故y的对称轴为x=1/3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点

超级试练试题库

© 2017-2019 超级试练试题库,All Rights Reserved.